A time-periodic oscillatory hexagonal solution in a 2-dimensional integro-differential reaction-diffusion system

Shunsuke Kobayashi, Takashi Okuda Sakamoto, Yasuhide Uegata, Shigetoshi Yazaki

研究成果: Article査読

抄録

An oscillatory hexagonal solution in a two component reaction-diffusion system with a non-local term is studied. By applying the center manifold theory, we obtain a four-dimensional dynamical system that informs us about the bifurcation structure around the trivial solution. Our results suggest that the oscillatory hexagonal solution can bifurcate from a stationary hexagonal solution via the Hopf bifurcation. This provides a reasonable explanation for the existence of the oscillatory hexagon.

本文言語English
ページ(範囲)253-267
ページ数15
ジャーナルHiroshima Mathematical Journal
50
2
DOI
出版ステータスPublished - 2020

フィンガープリント 「A time-periodic oscillatory hexagonal solution in a 2-dimensional integro-differential reaction-diffusion system」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル