Tusk: A framework for overviewing the performance of F0 estimators

Masanori Morise, Hideki Kawahara

Research output: Contribution to journalConference articlepeer-review

3 Citations (Scopus)

Abstract

This article presents a framework for overviewing the performance of fundamental frequency (F0) estimators and evaluates its effectiveness. Over the past few decades, many F0 estimators and evaluation indices have been proposed and have been evaluated using various speech databases. In speech analysis synthesis research, modern estimators are used as the algorithm to fulfill the demand for high-quality speech synthesis, but at the same time, they are competing with one another on minor issues. Specifically, while all of them meet the demands for high-quality speech synthesis, the result depends on the speech database used in the evaluation. Since there are various types of speech, it is inadvisable to discuss the effectiveness of each estimator on the basis of minor differences. It would be better to select the appropriate F0 estimator in accordance with the speech characteristics. The framework we propose, TUSK, does not rank the estimators but rather attempts to overview them. In TUSK, six parameters are introduced to observe the trends in the characteristics in each F0 estimator. The signal is artificially generated so that six parameters can be controllable independently. In this article, we introduce the concept of TUSK and determine its effectiveness using several modern F0 estimators.

Original languageEnglish
Pages (from-to)1790-1794
Number of pages5
JournalProceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH
Volume08-12-September-2016
DOIs
Publication statusPublished - 2016
Event17th Annual Conference of the International Speech Communication Association, INTERSPEECH 2016 - San Francisco, United States
Duration: 8 Sep 201616 Sep 2016

Keywords

  • Fundamental frequency
  • Noise robustness
  • Speech analysis
  • Temporal variation

Fingerprint

Dive into the research topics of 'Tusk: A framework for overviewing the performance of F0 estimators'. Together they form a unique fingerprint.

Cite this