Spontaneous parity breaking in spin-orbital coupled systems

Satoru Hayami, Hiroaki Kusunose, Yukitoshi Motome

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)


Effects of spontaneous parity breaking by charge, spin, and orbital orders are investigated in a two-band Hubbard model on a honeycomb lattice. This is a minimal model in which the interorbital hopping, atomic spin-orbit coupling, and strong electron correlation give rise to fascinating properties, such as the magnetoelectric effects, quantum spin Hall effect, and spin or valley splitting in the band structure. We perform the symmetry analysis of possible broken-parity states and the mean-field analysis of their competition. We find that the model at 1/4 filling exhibits a spin-orbital composite ordered state and a charge ordered state, in addition to a paramagnetic quantum spin Hall insulator. We show that the composite ordered phase exhibits two types of magnetoelectric responses. The charge ordered state shows spin splitting in the band structure, while the topological nature varies depending on electron correlations.

Original languageEnglish
Article number081115
JournalPhysical Review B - Condensed Matter and Materials Physics
Issue number8
Publication statusPublished - 28 Aug 2014

Cite this