Hidden Markov models and iterative aligners: study of their equivalence and possibilities.

H. Tanaka, Masato Ishikawa, K. Asai, A. Konagaya

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

There are many shared attributes between existing iterative aligners and Hidden Markov Model (HMM). A learning algorithm of HMM called Viterbi is the same as the iteration of DP-matching of iterative aligners. HMM aligners can use the result of an iterative aligner initially, incorporate the similarity score of amino acids, and apply the detailed gap cost systems to improve the matching accuracy. On the other hand, the iterative aligner can inherit the modeling capability of HMM, and provide the better representation of the proteins than motifs. In this paper, we present an overview of several iterative aligners which include the parallel iterative aligner of ICOT and the HMM aligner of Haussler's group. We compare the merits and shortcomings of these aligners. This comparison enables us to formulate a better, more advanced aligner through proper integration of the iterative technique and HMM technique.

Original languageEnglish
Pages (from-to)395-401
Number of pages7
JournalProceedings / ... International Conference on Intelligent Systems for Molecular Biology ; ISMB. International Conference on Intelligent Systems for Molecular Biology
Volume1
Publication statusPublished - 1 Jan 1993

Fingerprint Dive into the research topics of 'Hidden Markov models and iterative aligners: study of their equivalence and possibilities.'. Together they form a unique fingerprint.

  • Cite this