Functional implications of membrane modification with semenogelins for inhibition of sperm motility in humans

Kaoru Yoshida, Zoárd Tibor Krasznai, Zoltán Krasznai, Miki Yoshiike, Natsuko Kawano, Manabu Yoshida, Masaaki Morisawa, Zoltán Tóth, Zsuzsa Kassai Bazsáné, Teréz Márián, Teruaki Iwamoto

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)


Semenogelin I and II (Sgs) are the major component of human semen coagulum. The protein is rapidly cleaved after ejaculation by a prostate-specific antigen, resulting in liquefaction of the semen coagulum and the progressive release of motile spermatozoa. Sgs inhibit human sperm motility; however, there is currently no information on its effect on the sperm membrane. This study investigated the role of Sgs on human sperm motility through regulation of membrane potential and membrane permeability. Fresh semen samples were obtained from normozoo-spermic volunteers, and studies were conducted using motile cells selected using the swim-up method. Sgs changed the characteristics of sperm motion from circular to straightforward as evaluated by a computer-assisted motility analyzer, and all parameters were decreased more than 2.5 mg/mL. The results demonstrate that Sgs treatment immediately hyperpolarized the membrane potential of swim-up-selected sperm, changed the membrane structure, and time-dependently increased membrane permeability, as determined through flow cytometric analysis. The biphasic effects of Sgs were time- and dose-dependent and partially reversible. In addition, a monoclonal antibody against Sgs showed positive binding to cell membrane proteins in fixed cells, observed with confocal fluorescence microscopy. These results demonstrate that Sgs modifies the membrane structure, indirectly inhibiting motility, and provides suggestions for a therapy for male infertility through selection of a functional sperm population using Sgs. Cell Motil.

Original languageEnglish
Pages (from-to)99-108
Number of pages10
JournalCell Motility and the Cytoskeleton
Issue number2
Publication statusPublished - Feb 2009


  • Male infertility
  • Membrane permeability
  • Membrane potential
  • Semen coagulum


Dive into the research topics of 'Functional implications of membrane modification with semenogelins for inhibition of sperm motility in humans'. Together they form a unique fingerprint.

Cite this