Extra-mitochondrial citrate synthase initiates calcium oscillation and suppresses age-dependent sperm dysfunction

Woojin Kang, Yuichirou Harada, Kenji Yamatoya, Natsuko Kawano, Seiya Kanai, Yoshitaka Miyamoto, Akihiro Nakamura, Mami Miyado, Yoshiki Hayashi, Yoko Kuroki, Hidekazu Saito, Yasuhiro Iwao, Akihiro Umezawa, Kenji Miyado

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

Men and women become infertile with age, but the mechanism of declining male fertility, more specifically, the decrease in in sperm quality, is not well known. Citrate synthase (CS) is a core enzyme of the mitochondrial tricarboxylic acid (TCA) cycle, which directly controls cellular function. Extra-mitochondrial CS (eCS) is produced and abundant in the sperm head; however, its role in male fertility is unknown. We investigated the role of eCS in male fertility by producing eCs-deficient (eCs-KO) mice. The initiation of the first spike of Ca2+ oscillation was substantially delayed in egg fused with eCs-KO sperm, despite normal expression of sperm factor phospholipase C zeta 1. The eCs-KO male mice were initially fertile, but the fertility dropped with age. Metabolomic analysis of aged sperm revealed that the loss of eCS enhances TCA cycle in the mitochondria with age, presumably leading to depletion of extra-mitochondrial citrate. The data suggest that eCS suppresses age-dependent male infertility, providing insights into the decline of male fertility with age.

Original languageEnglish
Pages (from-to)583-595
Number of pages13
JournalLaboratory Investigation
Volume100
Issue number4
DOIs
Publication statusPublished - 1 Apr 2020

Fingerprint

Dive into the research topics of 'Extra-mitochondrial citrate synthase initiates calcium oscillation and suppresses age-dependent sperm dysfunction'. Together they form a unique fingerprint.

Cite this