Controllable antimicrobial properties of silver ion-exchanged niobate and tantalate compounds

Withanage Isuru Udakara Withanage, Kuda Durayalage Sulasa Devi Ariyapala, Nobuhiro Kumada, Takahiro Takei, Mayu Ueda, Mamoru Aizawa

Research output: Contribution to journalArticlepeer-review

Abstract

We designed pyrochlore-type potassium niobate (KN) and potassium tantalate (KT) by introducing silver ions to improve their antibacterial efficiency. KN and KT samples were used as ion-exchangeable parent compounds, and molten AgNO3 was used for the ion-exchange reaction. The formation of silver ion-exchanged compounds with various molar ratios, which was investigated by X-ray diffraction (XRD), indicated a clear structural transformation of KN after complete ion-exchange. The antibacterial efficacy of these samples was investigated using the colony count method, and the relative antibacterial activity was compared based on the area of the inhibition zone. The results indicated that silver ion-exchanged samples with molar ratios of Ag/Nb = 0.05, 0.44, 0.67, and Ag/Ta = 0.07, 0.44 0.64 exhibited complete (100%) antibacterial activity against Staphylococcus aureus (gram-positive) and Escherichia coli (gram-negative). Among the silver ion-exchanged samples, KAN1 and KAT1 exhibited the highest antibacterial activities because of the controlled release of Ag+ ions through their tunnel structure. In this study, it was found that tunable silver-release properties of pyrochlore-type niobate and tantalate enable the optimization of discharged Ag+ ions, which inhibits the bacterial efficacy in different extents, thus suggesting their use in various biomedical applications.

Original languageEnglish
Pages (from-to)49-57
Number of pages9
JournalJournal of Asian Ceramic Societies
Volume10
Issue number1
DOIs
Publication statusPublished - 2022

Keywords

  • Antibacterial activity
  • ceramics
  • hydrothermal
  • ion-exchange
  • pyrochlore-type

Fingerprint

Dive into the research topics of 'Controllable antimicrobial properties of silver ion-exchanged niobate and tantalate compounds'. Together they form a unique fingerprint.

Cite this