Bidirectional Connectivity Between Broca's Area and Wernicke's Area During Interactive Verbal Communication

Yumie Ono, Xian Zhang, J. Adam Noah, Swethasri Dravida, Joy Hirsch

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Aim: This investigation aims to advance the understanding of neural dynamics that underlies live and natural interactions during spoken dialogue between two individuals. Introduction: The underlying hypothesis is that functional connectivity between canonical speech areas in the human brain will be modulated by social interaction. Methods: Granger causality was applied to compare directional connectivity across Broca's and Wernicke's areas during verbal conditions consisting of interactive and noninteractive communication. Thirty-three pairs of healthy adult participants alternately talked and listened to each other while performing an object naming and description task that was either interactive or not during hyperscanning with functional near-infrared spectroscopy (fNIRS). In the noninteractive condition, the speaker named and described a picture-object without reference to the partner's description. In the interactive condition, the speaker performed the same task but included an interactive response about the preceding comments of the partner. Causality measures of hemodynamic responses from Broca's and Wernicke's areas were compared between real, surrogate, and shuffled trials within dyads. Results: The interactive communication was characterized by bidirectional connectivity between Wernicke's and Broca's areas of the listener's brain. Whereas this connectivity was unidirectional in the speaker's brain. In the case of the noninteractive condition, both speaker's and listener's brains showed unidirectional top-down (Broca's area to Wernicke's area) connectivity. Conclusion: Together, directional connectivity as determined by Granger analysis reveals bidirectional flow of neuronal information during dynamic two-person verbal interaction for processes that are active during listening (reception) and not during talking (production). Findings are consistent with prior contrast findings (general linear model) showing neural modulation of the receptive language system associated with Wernicke's area during a two-person live interaction. The neural dynamics that underlies real-life social interactions is an emergent topic of interest. Dynamically coupled cross-brain neural mechanisms between interacting partners during verbal dialogue have been shown within Wernicke's area. However, it is not known how within-brain long-range neural mechanisms operate during these live social functions. Using Granger causality analysis, we show bidirectional neural activity between Broca's and Wernicke's areas during interactive dialogue compared with a noninteractive control task showing only unidirectional activity. Findings are consistent with an Interactive Brain Model where long-range neural mechanisms process interactive processes associated with rapid and spontaneous spoken social cues.

Original languageEnglish
Pages (from-to)210-222
Number of pages13
JournalBrain Connectivity
Volume12
Issue number3
DOIs
Publication statusPublished - Apr 2022

Keywords

  • effective connectivity
  • functional near-infrared spectroscopy
  • Granger causality
  • human language interactions
  • hyperscanning
  • two-person neuroscience
  • verbal dialogue

Fingerprint

Dive into the research topics of 'Bidirectional Connectivity Between Broca's Area and Wernicke's Area During Interactive Verbal Communication'. Together they form a unique fingerprint.

Cite this