Approximate Bayesian Computation and Model Assessment for Repulsive Spatial Point Processes

Shinichiro Shirota, Alan E. Gelfand

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

In many applications involving spatial point patterns, we find evidence of inhibition or repulsion. The most commonly used class of models for such settings are the Gibbs point processes. A recent alternative, at least to the statistical community, is the determinantal point process. Here, we examine model fitting and inference for both of these classes of processes in a Bayesian framework. While usual MCMC model fitting can be available, the algorithms are complex and are not always well behaved. We propose using approximate Bayesian computation (ABC) for such fitting. This approach becomes attractive because, though likelihoods are very challenging to work with for these processes, generation of realizations given parameter values is relatively straightforward. As a result, the ABC fitting approach is well-suited for these models. In addition, such simulation makes them well-suited for posterior predictive inference as well as for model assessment. We provide details for all of the above along with some simulation investigation and an illustrative analysis of a point pattern of tree data exhibiting repulsion. R code and datasets are included in the supplementary material.

Original languageEnglish
Pages (from-to)646-657
Number of pages12
JournalJournal of Computational and Graphical Statistics
Volume26
Issue number3
DOIs
Publication statusPublished - 3 Jul 2017

Keywords

  • Determinantal point processes
  • Gibbs point processes
  • Inefficiency factors
  • Model checking
  • Summary statistics

Fingerprint Dive into the research topics of 'Approximate Bayesian Computation and Model Assessment for Repulsive Spatial Point Processes'. Together they form a unique fingerprint.

Cite this